Complete Lifts of Harmonic Maps and Morphisms between Euclidean Spaces

نویسنده

  • Ye-lin Ou
چکیده

We introduce the complete lifts of maps between (real and complex) Euclidean spaces and study their properties concerning holomorphicity, harmonicity and horizontal weakly conformality. As applications, we are able to use this concept to characterize holomorphic maps φ : C ⊃ U −→ C (Proposition 2.3) and to construct many new examples of harmonic morphisms (Theorem 3.3). Finally we show that the complete lift of the quaternion product followed by the complex product is a simple and explicit example of a harmonic morphism which does not arise (see Definition 4.8 in [5]) from any Kähler structure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Classifications of ∞-harmonic Maps between Riemannian Manifolds

∞-Harmonic maps are a generalization of ∞-harmonic functions. They can be viewed as the limiting cases of p-harmonic maps as p goes to infinity. In this paper, we give complete classifications of linear and quadratic ∞harmonic maps from and into a sphere, quadratic ∞-harmonic maps between Euclidean spaces. We describe all linear and quadratic ∞-harmonic maps between Nil and Euclidean spaces, be...

متن کامل

Classifications of some special infinity-harmonic maps

∞-Harmonic maps are a generalization of ∞-harmonic functions. They can be viewed as the limiting cases of p-harmonic maps as p goes to infinity. In this paper, we give complete classifications of linear and quadratic ∞-harmonic maps from and into a sphere, quadratic ∞-harmonic maps between Euclidean spaces. We describe all linear and quadratic ∞-harmonic maps between Nil and Euclidean spaces, b...

متن کامل

On the Classification of Quadratic Harmonic Morphisms between Euclidean Spaces

We give a classification of quadratic harmonic morphisms between Euclidean spaces (Theorem 2.4) after proving a Rank Lemma. We also find a correspondence between umbilical (Definition 2.7) quadratic harmonic morphisms and Clifford systems. In the case R −→ R, we determine all quadratic harmonic morphisms and show that, up to a constant factor, they are all bi-equivalent (Definition 3.2) to the ...

متن کامل

ar X iv : d g - ga / 9 51 20 10 v 2 2 4 M ay 1 99 6 Weierstrass representations for harmonic morphisms on Euclidean spaces and spheres

We construct large families of harmonic morphisms which are holomorphic with respect to Hermitian structures by finding heierarchies of Weierstrass-type representations. This enables us to find new examples of complex-valued harmonic mor-phisms from Euclidean spaces and spheres.

متن کامل

ar X iv : d g - ga / 9 41 00 05 v 2 1 7 O ct 1 99 4 Hermitian structures and harmonic morphisms in higher dimensional Euclidean spaces

We construct new complex-valued harmonic morphisms from Euclidean spaces from functions which are holomorphic with respect to Hermitian structures. In particular, we give the first global examples of complex-valued harmonic morphisms from R n for each n > 4 which do not arise from a Kähler structure; it is known that such examples do not exist for n ≤ 4.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995